CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures.
نویسندگان
چکیده
Continuous application of 4-aminopyridine (4-AP, 50 microM) to combined slices of hippocampus-entorhinal cortex obtained from adult mice induces (1) interictal discharges that initiate in the CA3 area and propagate via the hippocampal regions CA1 and subiculum to the entorhinal cortex and return to the hippocampus through the dentate gyrus; and (2) ictal discharges that originate in the entorhinal cortex and propagate via the dentate gyrus to the hippocampus proper. Ictal discharges disappear over time, whereas synchronous interictal discharges continue to occur throughout the experiment. Lesioning the Schaffer collaterals abolishes interictal discharges in CA1, entorhinal cortex, and dentate gyrus and discloses entorhinal ictal discharges that propagate, via the dentate gyrus, to the CA3 subfield. Interictal discharges originating in CA3 also prevent the occurrence of ictal events generated in the entorhinal cortex during application of Mg2+-free medium. In both models, ictal discharge generation recorded in the entorhinal cortex after Schaffer collateral cut is prevented by mimicking CA3 neuronal activity through rhythmic electrical stimulation (0.25-1.5 Hz) of the CA1 hippocampal output region. Our findings demonstrate that interictal discharges of hippocampal origin control the expression of ictal epileptiform activity in the entorhinal cortex. Sectioning the Schaffer collaterals may model the chronic epileptic condition in which cell damage in the CA3 subfield results in loss of CA3 control over the entorhinal cortex. Hence, we propose that the functional integrity of hippocampal output neurons may represent a critical control point in temporal lobe epileptogenesis.
منابع مشابه
Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks.
Deep-brain electrical or transcranial magnetic stimulation may represent a therapeutic tool for controlling seizures in patients presenting with epileptic disorders resistant to antiepileptic drugs. In keeping with this clinical evidence, we have reported that repetitive electrical stimuli delivered at approximately 1 Hz in mouse hippocampus-entorhinal cortex (EC) slices depress the EC ability ...
متن کاملLimbic network interactions leading to hyperexcitability in a model of temporal lobe epilepsy.
In mouse brain slices that contain reciprocally connected hippocampus and entorhinal cortex (EC) networks, CA3 outputs control the EC propensity to generate experimentally induced ictal-like discharges resembling electrographic seizures. Neuronal damage in limbic areas, such as CA3 and dentate hilus, occurs in patients with temporal lobe epilepsy and in animal models (e.g., pilocarpine- or kain...
متن کاملHippocampus-entorhinal cortex loop and seizure generation in the young rodent limbic system.
Application of the convulsant 4-aminopyridine (4AP, 50 microM) to adult mouse combined hippocampus-entorhinal cortex (EC) slices induces interictal and ictal discharges originating from CA3 and EC respectively. In this model of limbic seizures, ictal discharges disappear over time and are reestablished after Schaffer collateral cut, a procedure that blocks interictal propagation from CA3 to EC....
متن کاملGeneration and propagation of 4-AP-induced epileptiform activity in neonatal intact limbic structures in vitro.
We examined the generation, propagation and pharmacology of 4-aminopyridine (4-AP)-induced epileptiform activity (EA) in the intact interconnected limbic structure of the newborn (P0-7) rat in vitro. Whole-cell recordings of CA3 pyramidal cells and multisite field potential recordings in CA3, CA1, dentate gyrus, and lateral and medial entorhinal cortex revealed 4-AP-induced EA as early as P0-1....
متن کاملMaturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro.
In vivo studies suggest that ontogenesis of limbic seizures is determined by the development of the limbic circuit. We have now used the newly-developed in vitro intact interconnected neonatal rat limbic structures preparation to determine the developmental profile of kainate-induced epileptiform activity in the hippocampus and its propagation to other limbic structures. We report gradual alter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 23 شماره
صفحات -
تاریخ انتشار 1997